【新澳最精准资料免费提供】 | 【澳门资料大全,正版资料查询】 | 【2024新奥门正版资料免费提拱】 | 【2024新澳门天天六开好彩大全】 | 【7777788888王中王中恃】 | 【澳门一码一肖100准吗】 | 【新奥彩图库资料图片】 | 【澳门二四六天天免费好材料】 | 【新奥精准资料免费提供】 | 【2024新奥天天免费资料】 | 【新奥彩资料免费提供】 | 【新澳天天开奖资料大全最新54期】 | 【新噢彩资料免费资料大全】 |
财联社11月12日(编辑 牛占林)很多人工智能(AI)科学家和初创公司认为,通过增加更多数据和算力来扩大当前模型,以持续改进AI模型的方法正在走到尽头。因此,像OpenAI这样的AI公司正在寻求通过开发新的训练技术来克服当前面临的挑战,这些技术更像人类的思考方式。
自风靡全球的聊天机器人ChatGPT发布以来,科技公司都是通过增加更多数据和算力来扩大并改善AI模型。但现在,一些最杰出的AI科学家正在指出这种“越大越好”的局限性。
人工智能实验室Safe Superintelligence和OpenAI的联合创始人Ilya Sutskever近日表示,扩大预训练(训练AI模型的阶段,该模型使用大量未标记的数据来理解语言模式和结构)所取得的成果已经达到了一个平稳期,对提升模型性能的帮助有限。
Sutskever早期主张通过在预训练中使用更多数据和算力来实现生成式AI的巨大飞跃,这最终创造了ChatGPT。他今年早些时候离开OpenAI,创立了Safe Superintelligence。
Sutskever表示:“以前是规模扩张的时代,现在我们又回到了奇迹和发现的时代。每个人都在寻找下一个东西,这比以往任何时候都更重要。”
此外,Sutskever还承认他的公司正在研究一种扩大预训练规模的替代方法,但未透露更多细节。
新技术竞赛
大模型的所谓“训练”需要同时运行数百个芯片,成本可能高达数千万美元。考虑到系统的复杂性,它们更有可能出现硬件导致的故障;在测试结束之前,研究人员可能无法知道这些模型的最终性能,这可能需要几个月的时间。
另一个问题是,大语言模型吞噬了大量数据,而AI模型已经耗尽了世界上所有容易获取的数据。电力短缺也阻碍了训练运行,因为这个过程需要大量的能源。
为了克服这些挑战,研究人员正在探索测试时计算(test-time compute),这是一种在所谓的推理阶段或使用模型时增强现有AI模型的技术。例如,模型可以实时生成和评估多种可能性,最终选择最佳前进路径,而不是立即选择一个答案。
这种方法使模型能够将更多的处理能力投入到具有挑战性的任务中,比如数学或编码问题或需要类似人类的推理和决策的复杂操作。
OpenAI研究员Noam Brown此前表示:“事实证明,让一个机器人在一盘扑克牌中思考20秒,与将模型放大10万倍、训练时间延长10万倍的效果相同。”
OpenAI 在其新发布的模型“o1”中采用了这项技术,与此同时,来自Anthropic、xAI和DeepMind等其他顶尖AI实验室的研究人员也在致力于开发自己的技术版本。
OpenAI首席产品Kevin Weil表示:“我们看到了很多低垂的果实,摘下来让这些模型变得更好。等到人们迎头赶上的时候,我们会努力开发新的技术。”
多位科学家、研究人员和投资者认为,这种新技术可能会重塑AI军备竞赛,并对AI公司所需求的各类资源产生影响。
【澳门单双期期准】 | 【新奥好彩最准确免费资料】 | 【新澳门彩历史开奖记录走势图香港】 | 【2024新澳正版免费资料】 | 【澳门二四六免费资料大全499】 | 【新澳门彩历史开奖结果走势图】 | 【2004新澳门天天开好彩大全正版】 | 【新澳门六开奖结果记录】 | 【2024免费资料】 | 【2024今晚新澳开奖号码】 | 【新澳门精准资料大全管家婆料】 | 【澳门资料大全正版免费资料】 | 【7777788888马会传真】 | 【澳门二四六天下彩天天免费大全】 |
【新奥门资料免费大全最新更新内容】 | 【新澳门正版资料大全精准】 | 【2024年新澳门免费资料】 | 【2024新澳门正版挂牌】 | 【2024澳门天天开好彩大全凤凰天机】 | 【澳门必中一一肖一码服务内容】 | 【2024新奥历史开奖记录】 | 【新澳最新版精准特】 | 【新澳2024大全正版免费资料】 | 【新澳精准资料网址】 | 【新澳天天开奖资料大全旅游攻略】 | 【2024新澳天天资料免费大全】 | 【新澳精准资料免费群聊】 | 【2024正版资料大全】 |
评论
打开APP查看74条评论Maru
7秒前
人工智能实验室Safe Superintelligence和OpenAI的联合创始人Ilya Sutskever近日表示,扩大预训练(训练AI模型的阶段,该模型使用大量未标记的数据来理解语言模式和结构)所取得的成果已经达到了一个平稳期,对提升模型性能的帮助有限。
次瀚海
4分钟前
为了克服这些挑战,研究人员正在探索测试时计算(test-time compute),这是一种在所谓的推理阶段或使用模型时增强现有AI模型的技术。
李士龙
4天前
此外,Sutskever还承认他的公司正在研究一种扩大预训练规模的替代方法,但未透露更多细节。
发表您的评论: